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Abstract

When applying any technique of multidimensional
models to problems of practice, one always has to
cope with two problems: it is necessary to have a
possibility to represent the models with a “reason-
able” number of parameters and to have sufficiently
efficient computational procedures at one’s disposal.
When considering graphical Markov models in prob-
ability theory, both of these conditions are fulfilled;
various computational procedures for decomposable
models are based on the ideas of local computations,
whose theoretical foundations were laid by Lauritzen
and Spiegelhalter.

The presented contribution studies a possibility of
transferring these ideas from probability theory into
Dempster-Shafer theory of evidence. The paper re-
calls decomposable models, discusses connection of
the model structure with the corresponding system
of conditional independence relations, and shows that
under special additional conditions, one can locally
compute specific basic assignments which can be con-
sidered to be conditional.

Keywords. Multidimensional models, graphical
models, conditional independence, factorisation, com-
putations.

1 Introduction

The great advantage of Dempster-Shafer theory [5, 18]
is the fact that it generalises classical probability the-
ory in the way that one can easily describe not only
uncertainty but also vagueness (ignorance). Neverthe-
less, the disadvantage of this approach stems from the
fact that belief functions cannot be represented by a
point function (like density in probability theory); in-
stead, one has to manipulate with set functions, which
leads to exponential increase of algorithmic complex-
ity of all the necessary computational procedures.

With regard to probability theory, substantial de-

crease of computational complexity was achieved with
the help of Graphical Markov Models (GMM), a tech-
nique developed in the last quarter of the last century.
Here we specifically have in mind a technique based on
local computations for which theoretical background
was laid by Lauritzen and Spiegelhalter [17]. Its basic
idea can be expressed in a few words: a multidimen-
sional distribution represented by a Bayesian network
is first converted into a decomposable model, which
allows for efficient computation of conditional proba-
bilities.

Studying properly probabilistic GMM one can realise
that it is a notion of conditional independence (which
is closely connected with a notion of factorisation)
that makes it possible to represent multidimensional
probability distributions efficiently. A goal of this pa-
per is to make a brief survey summarising results
concerning decomposable models within Dempster-
Shafer theory of evidence presented in [10, 11, 12]. In
addition to this we will show that, even in Dempster-
Shafer theory, one can employ the basic ideas of Lau-
ritzen and Spiegelhalter and compute “conditional”
basic assignments locally.

1.1 Notation

In this paper we consider a finite multidimensional
space XN = X1 ×X2 × . . . ×Xn, and its subspaces
(for all K ⊆ N)

XK =×i∈KXi.

For a point x = (x1, x2, . . . , xn) ∈ XN its projection
into subspace XK is denoted x↓K = (xi,i∈K), and for
A ⊆ XN

A↓K = {y ∈ XK : ∃x ∈ A, x↓K = y}.

By a join of two sets A ⊆ XK and B ⊆ XL we un-
derstand a set

A⊗B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.



Let us note that if K and L are disjoint, then A⊗B =
A×B, if K = L then A⊗B = A ∩B.

In view of this paper it is important to realise that if
x ∈ C ⊆ XK∪L, then x↓K ∈ C↓K and x↓L ∈ C↓L,
which means that always C ⊆ C↓K ⊗ C↓L. How-
ever, it does not mean that C = C↓K ⊗ C↓L. For
example, considering two-dimensional frame of dis-
cernment X{1,2} with Xi = {ai, āi} for both i = 1, 2,
and C = {a1a2, ā1a2, a1ā2}, one gets

C↓{1} ⊗ C↓{2} = {a1, ā1} ⊗ {a2, ā2}
= {a1a2, ā1a2, a1ā2, ā1ā2} ! C.

1.2 Basic assignments

The role played by a probability distribution in prob-
ability theory is replaced by that of a set function in
Dempster-Shafer theory: belief function, plausibility
function or basic (probability or belief ) assignment.
Knowing one of them, one can derive the remaining
two. In this paper we will use almost exclusively basic
assignments.

A basic assignment m on XK (K ⊆ N) is a function

m : P(XK) −→ [0, 1],

for which ∑
∅6=A⊆XK

m(A) = 1.

If m(A) > 0, then A is said to be a focal element of
m. Recall that

Bel(A) =
∑
∅6=B⊆A

m(B),

and
Pl(A) =

∑
B⊆XK :B∩A6=∅

m(B).

Having a basic assignment m on XK one can consider
its marginal assignment on XL (for L ⊆ K), which is
defined (for each ∅ 6= B ⊆ XL):

m↓L(B) =
∑

A⊆XK :A↓L=B

m(A).

1.3 Operator of composition

Compositional models were introduced for probability
theory in [8] as an alternative to Bayesian networks
for efficient representation of multidimensional mea-
sures. They were based on recurrent application of
an operator of composition. An analogous operator
within the framework of Dempster-Shafer theory was
introduced in [14]).

Definition 1 Operator of Composition. For
two arbitrary basic assignments m1 on XK and m2

on XL (K 6= ∅ 6= L), a composition m1 . m2 is de-
fined for each C ⊆ XK∪L by one of the following ex-
pressions:

[a] if m↓K∩L2 (C↓K∩L) > 0 and C = C↓K ⊗C↓L then

(m1 . m2)(C) =
m1(C↓K) ·m2(C↓L)

m↓K∩L2 (C↓K∩L)
;

[b] if m↓K∩L2 (C↓K∩L) = 0 and C = C↓K × XL\K
then

(m1 . m2)(C) = m1(C↓K);

[c] in all other cases (m1 . m2)(C) = 0.

Remark 1 First of all, we want to stress that the
operator of composition is something other than the
famous Dempster’s rule of combination [5], or its non-
normalised version, the so called conjunctive combina-
tion rule [1]

(m1 ∩©m2)(C) =
∑

A⊆XK ,B⊆XL:A⊗B=C

m1(A) ·m2(B).

For example, the operation of composition is (in con-
trast with the above-mentioned conjunctive combina-
tion rule) neither commutative nor associative. While
Dempster’s rule of combination was designed to com-
bine different (independent) sources of information (it
realises fusion of sources), the operator of composition
primarily serves for composing pieces of local informa-
tion (usually coming from one source) into a global
model. The notion of composition is therefore closely
connected with the notion of factorisation. This fact
manifests also in the following difference: while for
computation of (m1 . m2)(C) it is enough to know
only m1 and m2 just for the respective projections of
set C, computing (m1 ∩©m2)(C) requires knowledge
of, roughly speaking, the entire basic assignments m1

and m2.

For further intuitive justification of the operator of
composition the reader is referred to [14], where a
number of its properties were proved. In view of the
forthcoming text, those presented in the following as-
sertion are the most important.

Proposition 1 Basic Properties. Let m1 and m2

be basic assignments defined on XK ,XL, respectively.
Then:

1. m1 . m2 is a basic assignment on XK∪L;

2. (m1 . m2)↓K = m1;

3. m1 . m2 = m2 . m1 ⇐⇒ m↓K∩L1 = m↓K∩L2 .



The reader probably noticed that Property 2 guar-
antees idempotency of the operator and gives a hint
about how to get a counterexample to its com-
mutativity. From point 1, one immediately gets
that for basic assignments m1,m2, . . . ,mr defined on
XK1 ,XK2 , . . . ,XKr , respectively, the formula m1 .
m2 . . . . . mr defines a (possibly multidimensional)
basic assignment defined on XK1∪...∪Kr

.

2 Controlled associativity

As already mentioned above, the operator of composi-
tion is not associative. This means that in fact we do
not know what the formula m1 .m2 . . . . .mr means.
To avoid the necessity of using too many parentheses,
let us make the following convention. In the formulae
like m1 .m2 . . . . . mr, when the order of application
of the operators of composition is not controlled by
parentheses, the operators will be applied from left to
right, i.e.,

m1 .m2 . . . . .mr = (. . . (m1 .m2) . . . . .mr−1) .mr.

Nevertheless, when designing a process of local com-
putations for compositional models in D-S theory
(which is intended to be an analogy to the process
proposed by Lauritzen and Spiegelhalter in [17]), one
needs a type of associativity expressed in the following
assertion.

Proposition 2 Controlled associativity. Let
m1,m2 and m3 be basic assignments on XK1 ,XK2

and XK3 , respectively, such that K2 ⊇ K1 ∩K3, and

m↓K1∩K2

1 (C↓K1∩K2) > 0 =⇒ m↓K1∩K2

2 (C↓K1∩K2) > 0.

Then

(m1 . m2) . m3 = m1 . (m2 . m3) .

Proof. The goal is to prove that for any C ⊆
XK1∪K2∪K3

((m1 . m2) . m3)(C) = (m1 . (m2 . m3))(C). (1)

We have to distinguish five special cases.

A. C 6= C↓K1 ⊗ C↓K2 ⊗ C↓K3 .
This is the simplest situation because, due to associa-
tivity of join,

(C↓K1 ⊗ C↓K2)⊗ C↓K3 = C↓K1 ⊗ (C↓K2 ⊗ C↓K3)

and therefore in this case both sides of formula (1)
equal 0, which follows from Definition 1 (case [c]).

B. C = C↓K1 ⊗ C↓K2 ⊗ C↓K3

& m↓K1∩K2

2 (C↓K1∩K2) > 0,m↓K2∩K3

3 (C↓K2∩K3) > 0.

In this case, under the given assumptions,

K3 ∩ (K1 ∪K2) = K3 ∩K2

and therefore

((m1 . m2) . m3)(C)

=
m1(C↓K1) ·m2(C↓K2)

m↓K2∩K1

2 (C↓K2∩K1)
· m3(C↓K3)

m↓K3∩K2

3 (C↓K3∩K2)
.

Analogously, we can make the following computations
(in the last modification we use the fact that in the
considered case K1 ∩K2 ∩K3 = K1 ∩K3):

(m1 . (m2 . m3))(C)

=
m1(C↓K1) · (m2 . m3)(C↓K2∪K3)

(m2 . m3)↓K1∩(K2∪K3)(C↓K1∩(K2∪K3))

=
m1(C↓K1)

(m2 . m3)↓K1∩(K2∪K3)(C↓K1∩(K2∪K3))

·m2(C↓K2) ·m3(C↓K3)

m↓K2∩K3

3 (C↓K2∩K3)

=
m1(C↓K1) ·m↓K1∩K2∩K3

3 (C↓K1∩K2∩K3)

m↓K1∩K2

2 (C↓K1∩K2) ·m↓K1∩K3

3 (C↓K1∩K3)

·m2(C↓K2) ·m3(C↓K3)

m↓K2∩K3

3 (C↓K2∩K3)

=
m1(C↓K1) ·m2(C↓K2) ·m3(C↓K3)

m↓K1∩K2

2 (C↓K1∩K2) ·m↓K2∩K3

3 (C↓K2∩K3)
,

which proves that the equality (1) holds.

C. C = C↓K1 ⊗ C↓K2 ⊗ C↓K3

& m↓K1∩K2

2 (C↓K1∩K2) > 0,m↓K2∩K3

3 (C↓K2∩K3) = 0.
In this case, if C↓K3\K2 6= XK3\K2

then both sides
of formula (1) equal 0. This is because, due to Defi-
nition 1, both composed assignments (m1 . m2) . m3

and m2 . m3 equal 0 for this C, and therefore also
(m1 . (m2 . m3))(C) = 0.

Therefore, consider C = C↓K1 ⊗C↓K2 ⊗XK3\K2
. For

this we get from Definition 1

((m1 . m2) . m3)(C) = (m1 . m2)(C↓K1∪K2).

For the right-hand side of formula (1) we get

(m2 . m3)(C↓K2∪K3) = m2(C↓K2)

and therefore

(m1 . (m2 . m3))(C) = (m1 . m2)(C↓K1∪K2).

D. C = C↓K1 ⊗ C↓K2 ⊗ C↓K3

& m↓K1∩K2

2 (C↓K1∩K2) = 0,m↓K2∩K3

3 (C↓K2∩K3) > 0.



focal elements (m1 . m2) . m3

{a1a2} 1
3

{a1ā2} 1
3

{a1a2, a1ā2} 1
3

Table 1: Composed basic assignment (m1 . m2) . m3

Since we assume that m↓K1∩K2

1 (C↓K1∩K2) > 0

implies m↓K1∩K2

2 (C↓K1∩K2) > 0, we know that

for the considered C, m↓K1∩K2

1 (C↓K1∩K2) = 0, and
therefore both sides of formula (1) equal 0 because m1

is marginal to both (m1.m2).m3 and m1.(m2.m3).

E. C = C↓K1 ⊗ C↓K2 ⊗ C↓K3

& m↓K1∩K2

2 (C↓K1∩K2) = 0,m↓K2∩K3

3 (C↓K2∩K3) = 0.
It is obvious from Definition 1 that both sides of
formula (1) equal 0 for all C but for C = C↓K1 ⊗
XK2\K1

⊗XK3\K1
. For this special case, however,

((m1 . m2) . m3)(C) = m1(C↓K1),

(m1 . (m2 . m3))(C) = m1(C↓K1). �

Example: Let us illustrate the necessity of the as-
sumption

m↓K1∩K2

1 (C↓K1∩K2) > 0 =⇒ m↓K1∩K2

2 (C↓K1∩K2) > 0

required in Lemma 2 by (for the sake of simplicity
a rather degenerated) example. Consider three basic
assignments m1, m2 and m3. Assume that in this case
K1 = K2 = {1} and K3 = {1, 2}, Xi = {ai, āi} for
both i = 1, 2. Define m1({a1}) = 1 and m2({ā1}) =
1, which means that both m1,m2 have only one focal
element, and m3(A) = 1

15 for all nonempty subsets of
X1 ×X2.

For these basic assignments we immediately get m1 =
m1 .m2 (when applying Definition 1, one has to take
C↓K1×X∅ = C↓K1), and therefore one gets m1 .m2 .
m3 as indicated in Table 1. Analogously, one gets
m2 . m3 which is depicted in Table 2. Computing

focal elements m2 . m3

{ā1a2} 1
3

{ā1ā2} 1
3

{ā1a2, a1ā2} 1
3

Table 2: Composed basic assignment m2 . m3

now the basic assignment m1 . (m2 . m3), one gets a

basic assignment with only one focal element

(m1 . (m2 . m3))({a1} ×X2) = 1.

Thus we have shown that in this case

(m1 . m2) . m3 6= m1 . (m2 . m3) .

3 Decomposable models

3.1 Independence and factorisation

What makes the representation and local compu-
tations with multidimensional probability distribu-
tions feasible is the property of factorisation [17].
Therefore, in [10] we also introduced this notion into
Dempster-Shafer theory of evidence.

Definition 2 Simple Factorisation. Consider
two nonempty sets K ∪L = N . We say that basic as-
signment m factorises with respect to (K,L) if there
exist two nonnegative set functions

φ : P(XK) −→ [0,+∞), ψ : P(XL) −→ [0,+∞),

such that for all A ⊆ XK∪L

m(A) =

{
φ(A↓K) · ψ(A↓L) if A = A↓K ⊗A↓L

0 otherwise.

Example: Consider X{1,2,3} = X1 × X2 × X3 with
all three Xi = {ai, āi} as in the preceding example,
and consider basic assignment m factorising with re-
spect to ({1, 2}, {2, 3}). This means that it can be
represented with the help of two functions

φ : P(X{1,2})→ [0,+∞), ψ : P(X{2,3})→ [0,+∞).

Since both subspaces X{1,2} and X{2,3} have 15
nonempty subsets, each of these functions is defined
with the help of maximally 15 numbers, which means
that the considered basic assignment can be repre-
sented with 30 parameters. Generally, a basic as-
signment on X{1,2,3} can have up to 255 focal ele-
ments, and the number of sets A ⊆ X{1,2,3} for which

A 6= A↓{1,2} ⊗A↓{2,3} is 156.

Remark 2 Notice that the importance of the factori-
sation does not follow only from the fact that the ba-
sic assignment m in the preceding example can be
represented by two functions φ and ψ, i.e., just with
30 parameters, but especially in the fact that the
value m(A) can be computed just from two values:
φ(A↓{1,2}) and ψ(A↓{2,3}). Value m(A) does not de-
pend on values of functions φ and ψ in other points
of their domains of definition.



In probability theory, the notion of factorisation is
closely connected with the notion of conditional inde-
pendence. The same holds in Dempster-Shafer theory
under the assumption that one accepts the notion of
conditional independence as it appears in the follow-
ing Definition 3, introduced originally in [13]. Never-
theless, based on the recommendation of the anony-
mous referee, let us first repeat some intuitive reason-
ing published in [13] that led us to this definition.

There are at least three ways to introduce a gener-
ally accepted concept of unconditional (some authors
call it marginal) independence (non-interactivity) for
two disjoint groups of variables XK and XL. Here we
will mention two of them, neither of which requires
Dempster’s rule of combination. The older one, used
for example by Ben Yaghlane et al. [1], Shenoy [19]
and Studený [21], is based on the properties of a com-
monality function defined for basic assignment m by
the formula

Q(A) =
∑

B⊆XN :A⊆B

m(B).

According to this older definition, we say that disjoint
groups of variables XK and XL are (unconditionally)
independent with respect to basic assignment m if

Q↓K∪L(A) = Q↓K(A↓K) ·Q↓L(A↓L)

for any A ⊆ XK∪L. The other (equivalent) definition
says that XK and XL are independent if for all A ⊆
XK∪L for which A = A↓K ×A↓L

m↓K∪L(A) = m↓K(A↓K) ·m↓L(A↓L),

and m↓K∪L(A) = 0 for all the remaining A ⊆ XK∪L
for which A 6= A↓K × A↓L. Both of these defini-
tions invite generalisation for the case of overlapping
groups of variables, both these generalisations sat-
isfy the so-called semigraphoid properties, and yet
these generalisations do not coincide. As it is dis-
cussed in [2], Studený showed that the generalisation
based on the commonality functions is not consistent
with marginalisation (for details the reader is referred
to [2]), and this is one of the reasons why we pre-
fer the following definition (another reason is that for
the concept of conditional independence from Defini-
tion 3, one can prove the Factorisation Lemma - see
Proposition 3 below).

Definition 3 Conditional Independence. Let m
be a basic

assignment on XN and K,L,M ⊂ N be disjoint, both
K,L 6= ∅. We say that groups of variables XK and XL

are conditionally independent given XM with respect

to m (and denote it by K⊥⊥L|M [m]), if for any A ⊆
XK∪L∪M such that A = A↓K∪M⊗A↓L∪M the equality

m↓K∪L∪M (A) ·m↓M (A↓M )

= m↓K∪M (A↓K∪M ) ·m↓L∪M (A↓L∪M )

holds true, and m↓K∪L∪M (A) = 0 for all the remain-
ing A ⊆ XK∪L∪M , for which A 6= A↓K∪M ⊗A↓L∪M .

Remark 3 As already mentioned above, it was
shown in [13] that this definition meets all the semi-
graphoid axioms [21] and that for M = ∅ it reduces
to the generally accepted definition of (unconditional,
or marginal) independence (see, e.g., [1]).

Important relationships between this type of condi-
tional independence and factorisation (operator of
composition) are presented in the following two as-
sertions proved in [14] and [23], respectively.

Proposition 3 Factorisation Lemma. Let
K,L ⊆ N be nonempty, K ∪ L = N . m factorises
with respect to (K,L) if and only if

K \ L⊥⊥L \K |K ∩ L [m].

Proposition 4 Factorisation of Composition.
Let K,L ⊆ N be nonempty, K ∪L = N . m factorises
with respect to (K,L) if and only if

m = m↓K . m↓L.

3.2 Graphical models

In probability theory, graphical models were de-
fined as probability distributions (measures) factoris-
ing with respect to a system of subsets forming cliques
of a graph (Daroch, Lauritzen and Speed 1980, Ed-
wards and Havránek 1985). For the sake of this pa-
per we will just define a subclass of graphical models,
so-called decomposable models, which factorise with
respect to decomposable graphs, i.e., with respect to
the graphs whose cliques (maximal complete subsets
of nodes) can be ordered to meet the so-called Run-
ning Intersection Property (RIP): for all i = 2, . . . , r
there exists j, 1 ≤ j < i, such that

Ki ∩ (K1 ∪ . . . ∪Ki−1) ⊆ Kj .

This offers us a possibility to define decomposable
models using Definition 2 recursively.

Definition 4 Decomposable Basic Assign-
ments. We say that a basic assignment m is
decomposable if it factorises with respect to a



decomposable graph in the following sense (let
K1,K2, . . . ,Kr be cliques of the considered de-
composable graph ordered so that they meet RIP):
for all i = 2, . . . , r the marginal m↓K1∪...∪Ki fac-
torises (in the sense of Definition 2) with respect to
(K1 ∪ . . . ∪Ki−1,Ki).

By repeated application of Proposition 4 one can see
that a decomposable model can easily be represented
by a system of its marginals.

Proposition 5 Composition of Decomposable
Models. Consider a decomposable graph with cliques
K1, . . . ,Kr. If this ordering meets RIP then m is de-
composable with respect to the graph in question if and
only if

m = m↓K1 . m↓K2 . . . . . m↓Kr−1 . m↓Kr .

This assertion says that a basic assignment is de-
composable if it can be composed from a system of
its marginals (the structure of the system must cor-
respond to cliques of a decomposable graph). We
can also ask the opposite question: having a sys-
tem of low-dimensional marginal basic assignment
m1,m2, . . . ,mr defined on XK1

,XK2
, . . . ,XKr

, re-
spectively, what are the properties of the multidimen-
sional basic assignment m1.m2.. . ..mr? The answer
to this question, which follows from the following as-
sertion proved in [13], is that if K1,K2, . . . ,Kr meet
RIP then m1 . m2 . . . . . mr is decomposable.

Proposition 6 For any sequence m1,m2, . . . ,mr of
basic assignments defined on XK1

,XK2
, . . . ,XKr

, re-
spectively, the sequence m̄1, m̄2, . . . , m̄r computed by
the following process

m̄1 = m1,

m̄2 = m̄↓K2∩K1

1 . m2,

m̄3 = (m̄1 . m̄2)↓K3∩(K1∪K2) . m3,

...

m̄r = (m̄1 . . . . . m̄r−1)↓Kr∩(K1∪...Kr−1) . mr,

has the following properties: m1 . . . . . mr = m̄1 .
. . . . m̄r; each m̄i is defined on XKi

and is marginal
to m1 . . . . . mr.

Remark 4 It is important to realise that if
K1,K2, . . . ,Kr meet RIP, then each Ki ∩ (K1 ∪
. . .Ki−1) is a subset of some Kj (j < i) and therefore

(m̄1 . . . . . m̄i−1)↓Ki∩(K1∪...Ki−1) = m̄
↓Ki∩Kj

j .

Therefore, from the computational point of view, the
process described in Proposition 6 is simple for sys-
tems of low-dimensional assignments corresponding to
decomposable graphs, and can be performed locally
(see the next section).

Remark 5 Notice that, thanks to Proposition 3, one
can deduce that for a decomposable basic assignment
m it is possible to read the system of conditional in-
dependence relations valid for m exactly in the same
way as it is done for decomposable probabilistic mea-
sures: If G = (N,E) is a decomposable graph with
respect to which decomposable basic assignment m
factorises, and if nodes i and j are separated in G by
set M then

i⊥⊥j |M [m].

However, let us stress once more: this possibility holds
only if one accepts Definition 3.

4 Local computations

By local computations we understand a process based
on the ideas published in the famous paper by Lau-
ritzen and Spiegelhalter [17]: the considered proba-
bilistic model (Bayesian network) was first converted
into a decomposable model which was subsequently
used to compute the required conditional probabili-
ties. What is important in the latter part of the pro-
cess is the fact that when computing the required con-
ditional probability, one performs computations only
on the system of marginal distributions defining the
decomposable model. During the computational pro-
cess one does not need to store more data than what
is necessary to store for the decomposable model.

In this section we assume that the considered basic
assignment is decomposable, i.e.,

m = m↓K1 . m↓K2 . . . . . m↓Kr ,

and K1,K2, . . . ,Kr meet RIP. So let us turn our at-
tention to answering a question: What type of compu-
tation will correspond to determination of conditional
probability?

Consider the simplest possible case. Assume the
goal is to compute a one-dimensional marginal
basic assignment for variable Xd in a case where
we know that the value of variable Xe equals a

(d, e ∈ K1 ∪ . . . ∪ Kr). If we denote by a
em the

basic assignment on Xe with just one focal element
a
em({a}) = 1, then composition a

em . m is a basic

assignment describing the situation when one knows
that Xe = a. Therefore, the goal mentioned above is

achieved by computation of ( aem .m)↓{d}.



Now, we are going to study the possibility of comput-
ing

( aem.m)↓{d} = ( aem. (m↓K1 .m↓K2 . . . ..m↓Kr ))↓{d}

locally. When evaluating ( aem . m)↓{d} we take full

advantage of the assumption that m is decomposable,
but, unfortunately, we also have to assume that {a}
is a focal element of (m)↓{e}, i.e., (m)↓{e}({a}) > 0.

Namely, under these assumptions we can make the
following consideration:

Having a decomposable model, we can find a permuta-
tion of the considered index sets K1,K2, . . . ,Kr such
that it meets RIP and the sequence starts with any
of the sets containing the index e. Without loss of
generality, let it be the sequence K1,K2, . . . ,Kr (so,
K1,K2, . . . ,Kr meet RIP and e ∈ K1). Then we can
apply Proposition 2 because {e}∩Kr ⊆ K1∪. . .∪Kr−1
(recall that we selected the ordering such that e ∈ K1)
and

(m)↓{e}({a}) > 0,

from which we get

a
em .m

= a
em . ((m↓K1 . m↓K2 . . . . . m↓Kr−1) . m↓Kr )

= ( aem . (m↓K1 . m↓K2 . . . . . m↓Kr−1)) . m↓Kr .

However, in the same way we also get

a
em . (m↓K1 . m↓K2 . . . . . m↓Kr−1)

= ( aem . (m↓K1 . m↓K2 . . . . . m↓Kr−2)) . m↓Kr−1 ,

and after applying Proposition 2 r − 1 times we get

a
em .m = a

em .m↓K1 . m↓K2 . . . . . m↓Kr−1 . m↓Kr .

So we have shown that if m is a decomposable basic

assignment and (m)↓{e}({a}) > 0, then ( aem.m)↓{d}

can always be computed locally in two steps:

• first order the respective Ki’s in the way that
they meet RIP and the first K1 contains index e,
and then

• apply Proposition 6 to the decomposable model

( aem .m↓K1) . m↓K2 . . . . . m↓Kr

receiving

m̄1 = a
em .m↓K1 ,

m̄2 = m̄↓K2∩K1

1 . m↓K2 ,

focal elements m1(X1, X2)

{a1a2, a1ā2} 1
4

{a1ā2, ā1ā2} 1
4

{a1a2, a1ā2, ā1a2} 1
2

m2(X2, X3)

{a2a3} 1
4

{ā2, a3} 1
4

{a2ā3, ā2ā3} 1
4

{a2ā3, ā2a3} 1
4

m3(X3, X4)

{a3a4} 1
2

{a3a4, ā3ā4} 1
4

{ā3a4, ā3ā4} 1
4

Table 3: Basic assignments m1,m2,m3

m̄3 = (m̄1 . m̄2)↓K3∩(K1∪K2) . m↓K3 ,

...

m̄r = (m̄1 . . . . . m̄n−1)↓Kn∩(K1∪...Kn−1) . m↓Kr .

Now we know that

a
em .m = m̄1 . m̄2 . . . . . m̄r,

each m̄i is marginal to a
em . m, and therefore the

required marginal basic assignment ( aem.m)↓{d} can

be obtained by marginalisation of any mi for which
d ∈ Ki. Recall that, due to RIP, all the computations
can be performed locally (see also Remark 4).

Example: Consider a 4-dimensional binary space
X1 × X2 × X3 × X4 with Xi = {ai, āi}, and three
two-dimensional basic assignments whose all focal el-
ements are given in Table 3. Let the goal be to com-
pute (m1 . m2 . m3)↓{4} under the assumption that
X1 = a1, i.e., we want to evaluate

( a11 m . (m1 . m2 . m3))↓{4}.

Since X1 is among the arguments of m1, and {a1} is
a focal element of (m1.m2.m3)↓{4}, we can apply the
above-introduced procedure (repeated application of
Proposition 2) getting that

( a11 m.(m1.m2.m3))↓{4} = ( a11 m.m1.m2.m3)↓{4}.

So, it remains to apply the process described in Propo-

sition 6. We get that a1
1 m . m1 has only one focal



element ({a1a2, a1ā2}), and therefore the same holds

also for ( a11 m .m1)↓{2}: ( a11 m .m1)↓{2}(X2) = 1.

From this we immediately get ( a11 m . m1)↓{2} . m2

with two focal elements

(( a11 m .m1)↓{2} . m2)(X2 × {ā3}) =
1

2

(( a11 m .m1)↓{2} . m2)(X2 ×X3) =
1

2
,

and therefore also its marginal (( a11 m . m1)↓{2} .

m2)↓{3}, which is necessary for the computation of
the next (already the last) composition, has two fo-
cal elements: {ā3} and X3. Evaluating this third

composition we get that (( a11 m .m1)↓{2} . m2)↓{3} .

m3 has again two focal elements {a3a4, ā3ā4} and
{ā3a4, ā3ā4}; for each of them the computed com-
posed basic assignment equals 1

2 . Marginalising the
last two-dimensional basic assignment we get the de-
sired result:

( a11 m . (m1 . m2 . m3))↓{4}

= ((( a11 m .m1)↓{2} . m2)↓{3} . m3)↓{4}

has only one focal element, namely

( a11 m . (m1 . m2 . m3))↓{4})(ā4) = 1.

Remark 6 If the goal is to compute a basic as-
signment for variable Xd under the condition that
Xe = a and simultaneously Xf = b, then one can

first compute the decomposable model a
em . m =

m̄1 . m̄2 . . . . . m̄r by the process described above,
and afterwards

b
fm . ( aem .m) = b

fm . (m̄1 . m̄2 . . . . . m̄r)

in an analogous way finding a new permutation of
K1,K2, . . . ,Kr meeting RIP such that the first index
set contains f . This time, naturally, we have to as-
sume that m↓{f}({b}) > 0, too.

5 Conclusions

Inspired by Graphical Markov Models in probabil-
ity theory, we introduced decomposable models in
Dempster-Shafer theory of evidence. For this we used
two recently introduced concepts: operator of compo-
sition and factorisation.

Based on a factorisation lemma it is possible to de-
duce the fact that the introduced decomposable mod-
els possess the same conditional independence struc-
ture as their probabilistic counterparts; it can be read

from the respective graphs following exactly the same
rules as in the probabilistic case. This, however, holds
only under the assumption that we accept the defini-
tion of conditional independence as presented here in
Definition 3. Recall that our papers are not the only
ones showing evidence in favour of this definition. As
it was already presented in [2], Studený showed that
the concept of conditional independence based on ap-
plication of the conjunctive combination rule is not
consistent with marginalisation. He found two consis-
tent basic assignments for which there does not exist
a common extension manifesting the respective con-
ditional independence (for more details and Studený’s
example see [2]). Let us stress here once more that
Definition 3 does not suffer from this insufficiency.

Nevertheless, it was not the main goal of this paper to
support the new concept of conditional independence.
Here we dealt with the question of whether the ideas
of local computations can also be applied to computa-
tions in Dempster-Shafer theory of evidence. At this
time we have, unfortunately, obtained only a partial
answer. The results presented in the last section show
that we are able to theoretically support local com-
putations in the cases when the associativity of the
operator of composition holds. We did it under the
additional assumption that m↓e({a}) > 0, i.e., under
the assumption that

Bel(Xe = a) = m↓e({a}) > 0.

From the point of view of real-world application, we
would prefer if the designed computational process
were applicable under a weaker condition, for exam-
ple, in a case where

Pl(Xe = a) =
∑

A⊆Xe:a∈A

m↓e(A) > 0.

However, as we showed in Example in Section 2, this
condition does not guarantee the associativity of the
operator of composition. Therefore, there remains
an open problem for the further research: either to
show that the proposed (or similar) computational
process corresponding to local computations can be
performed without the assumption of associativity, or
to modify the definition of the operator of composi-
tion (here we have in mind modification of case [b]
of Definition 1) so that associativity would be valid
under weaker conditions.
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[11] R. Jiroušek, “Is It Possible to Define Graphi-
cal Models in Dempster-Shafer Theory of Evi-
dence?” in: Proceedings of the 13th Int. Work-
shop on Non-Monotonic Reasoning, Toronto,
2010.
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[21] M. Studený, “Formal properties of conditional
independence in different calculi of AI,” in Pro-
ceedings of European Conference on Symbolic
and quantitative Approaches to Reasoning and
Uncertainty ECSQARU’93, K. Clarke, R. Kruse,
S. Moral, Eds., location and date, Springer-
Verlag, 1993, pp. 341–351.
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